organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-[3-(Trifluoromethyl)phenyl]-5,6,7,8tetrahydrocinnolin-3(2H)-one

Xin Wang, Xiao-Mao Zou,* You-Quan Zhu, Xu-Hong Hu and Hua-Zheng Yang*

State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianiin 300071, People's Republic of China Correspondence e-mail: wanggengmin@tju.edu.cn, nk_yanghz@126.com

Received 24 December 2007; accepted 10 January 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.008 Å; disorder in main residue; R factor = 0.069; wR factor = 0.212; data-to-parameter ratio = 11.1.

The title compound, $C_{15}H_{13}F_3N_2O$, contains one benzene ring, one cyclohexane ring and a pyridazine ring. The dihedral angle formed by the pyridazine ring with the benzene ring is 61.5 (2)°. The crystal structure is stabilized by two intermolecular hydrogen bonds (N-H···O and C-H···F). The cyclohexane ring adopts a screw-boat conformation. The CF₃ group is disordered over two positions; the site occupancy factors are ca 0.6 and 0.4.

Related literature

For related literature, see: Heinisch & Kopelent (1992); Kolar & Tisler (1999).

Experimental

Crystal data

C15H13F3N2O $V = 2796.6 (15) \text{ Å}^3$ $M_r = 294.27$ Z = 8Monoclinic, C2/c Mo $K\alpha$ radiation a = 8.929 (3) Å $\mu = 0.12 \text{ mm}^{-1}$ b = 11.443 (4) Å T = 294 (2) K c = 27.448 (8) Å $0.22 \times 0.20 \times 0.16 \text{ mm}$ $\beta = 94.232 \ (6)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.975, T_{\max} = 0.982$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.068$	H atoms treated by a mixture of
$wR(F^2) = 0.211$	independent and constrained
S = 1.02	refinement
2485 reflections	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
223 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$
85 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$N2-H2\cdotsO1^{i}$	0.91 (4)	1.88 (4)	2.783 (5)	178 (5)
C12-H12 \cdots F3' ⁱⁱ	0.93	2.51	3.362	152

7053 measured reflections

 $R_{\rm int} = 0.061$

2485 independent reflections

1098 reflections with $I > 2\sigma(I)$

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National Key Project for Basic Research (grant No. 20772067).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2529).

References

Bruker (1999). SMART (Version 5.618) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.

Heinisch, G. & Kopelent, H. (1992). Prog. Med. Chem. 29, 141-183. Kolar, P. & Tisler, M. (1999). Adv. Heterocycl. Chem. 75, 167-241. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, 0464 [doi:10.1107/S1600536808000871]

4-[3-(Trifluoromethyl)phenyl]-5,6,7,8-tetrahydrocinnolin-3(2H)-one

X. Wang, X.-M. Zou, Y.-Q. Zhu, X.-H. Hu and H.-Z. Yang

Comment

Many pyridazine derivatives have been found to exhibit biological activities such as insecticidal, fungicidal, herbicidal, plant-growth regulatory activity, *etc.* (Heinisch & Kopelent, 1992). For example, pyridate, credazine and maleic hydrazide (Kolar & Tisler, 1999) have been commercialized as herbicides. In order to discover new biologically active pyridazine compounds, the title compound, (I), was synthesized and its structure is reported here.

In the molecule of (I) (Fig. 1), the central pyridazine ring (C1—C8/N1/N2) is approximately coplanar with the cyclohexane ring (C1—C6) [dihedral angle = $4.36 (29)^{\circ}$] and the largest deviation from the mean plane is 0.306 (6) Å for atom C4. The dihedral angle formed by the heterocycle and the benzene ring (C9—C14) is $61.50 (18)^{\circ}$. The molecule is further stabilized by intermolecular N—H···O and C—H···F hydrogen bonds(Table 1). Glide-related molecules are linked *via* C—H···F hydrogen-bonded chains along the *c* axis. Part of the chain structure is shown in Fig. 2.

Experimental

4-(3-(Trifluoromethyl)phenyl)-4,4a,5,6,7,8-hexahydrocinnolin-3(2*H*)-one (1.5 mmol), and 0.5 g anhydrous copper(II) chloride were mixed in acetonitrile (40 ml), refluxed for 2 h. Water (20 ml) were then added. The organic layer was washed successively with saturated sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfateThe solvent was then evaporated in vacuo. The residue was purified *via* column chromatography. single crystals of (I) suitable for X-ray analysis were grown from ethyl acetate and petroleum ether at room temperature.

Refinement

The trifluoromethyl group shows positional disorder. At the final stage of the refinement, the occupancy factors of two possible sites, C15/F1/F2/F3 and C15/F1'/F2'/F3', were fixed at 0.429 and 0.571 respectively. All H atoms were positioned geometrically, with C—H = 0.93 and 0.97 A° and N—H = 0.91 (4) A°, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. View of the title compound with 30% probability ellipsoid.

Fig. 2. Intermolecular hydrogen-bonding interactions (dashed lines) in the structure of (I). H atoms not involved in hydrogen bonding have been omitted.

4-[3-(Trifluoromethyl)phenyl]-5,6,7,8-tetrahydrocinnolin-3(2H)-one

Crystal data	
$C_{15}H_{13}F_{3}N_{2}O$	$F_{000} = 1216$
$M_r = 294.27$	$D_{\rm x} = 1.398 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 1012 reflections
<i>a</i> = 8.929 (3) Å	$\theta = 2.9 - 20.2^{\circ}$
<i>b</i> = 11.443 (4) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 27.448 (8) Å	T = 294 (2) K
$\beta = 94.232 \ (6)^{\circ}$	Prism, colourless
$V = 2796.6 (15) \text{ Å}^3$	$0.22\times0.20\times0.16~mm$
Z = 8	

Data collection

Bruker SMART CCD area-detector diffractometer	2485 independent reflections
Radiation source: fine-focus sealed tube	1098 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.061$
T = 294(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 10$
$T_{\min} = 0.975, \ T_{\max} = 0.982$	$k = -13 \rightarrow 8$
7053 measured reflections	$l = -32 \rightarrow 32$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.068$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.212$	$w = 1/[\sigma^2(F_o^2) + (0.0738P)^2 + 4.8514P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
2485 reflections	$\Delta \rho_{\text{max}} = 0.32 \text{ e} \text{ Å}^{-3}$

223 parameters

85 restraints

$$\begin{split} &\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3} \\ &\text{Extinction correction: SHELXL97 (Sheldrick, 1997),} \\ &\text{Fc}^* = \text{kFc}[1 + 0.001 \text{xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \end{split}$$

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0029 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
F1	1.1701 (18)	0.1095 (16)	0.2649 (5)	0.144 (5)	0.429 (9)
F2	1.3627 (15)	0.1988 (12)	0.2422 (6)	0.167 (5)	0.429 (9)
F3	1.274 (2)	0.0347 (12)	0.2066 (5)	0.139 (5)	0.429 (9)
F1'	1.2515 (15)	0.1731 (11)	0.2699 (3)	0.152 (4)	0.571 (9)
F2'	1.3577 (10)	0.0982 (12)	0.2113 (4)	0.130 (4)	0.571 (9)
F3'	1.1498 (13)	0.0330 (10)	0.2327 (5)	0.170 (4)	0.571 (9)
O1	1.0587 (4)	0.0810 (3)	0.05160 (12)	0.0661 (10)	
N1	0.6764 (5)	0.0930 (3)	0.00974 (15)	0.0601 (11)	
N2	0.8244 (5)	0.0709 (4)	0.01511 (15)	0.0579 (11)	
C1	0.6214 (5)	0.1615 (4)	0.04183 (19)	0.0547 (13)	
C2	0.4543 (5)	0.1771 (5)	0.0370 (2)	0.0755 (16)	
H2A	0.4236	0.1960	0.0033	0.091*	
H2B	0.4074	0.1035	0.0446	0.091*	
C3	0.3977 (7)	0.2691 (7)	0.0689 (3)	0.120 (3)	
H3A	0.4001	0.3431	0.0518	0.144*	
H3B	0.2935	0.2522	0.0739	0.144*	
C4	0.4780 (7)	0.2826 (7)	0.1160 (3)	0.103 (2)	
H4A	0.4599	0.2141	0.1356	0.124*	
H4B	0.4373	0.3496	0.1322	0.124*	
C5	0.6424 (6)	0.2986 (5)	0.11490 (19)	0.0708 (16)	
H5A	0.6891	0.2872	0.1476	0.085*	
H5B	0.6622	0.3784	0.1053	0.085*	
C6	0.7142 (5)	0.2159 (4)	0.08030 (17)	0.0533 (13)	
C7	0.8642 (5)	0.1920 (4)	0.08449 (15)	0.0480 (12)	
C8	0.9248 (6)	0.1122 (4)	0.05062 (16)	0.0497 (12)	
C9	0.9705 (5)	0.2428 (4)	0.12244 (17)	0.0539 (13)	
C10	0.9951 (6)	0.3607 (5)	0.1261 (2)	0.0813 (18)	
H10	0.9450	0.4107	0.1036	0.098*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C11	1.0930 (7)	0.4069 (6)	0.1624 (3)	0.111 (3)
H11	1.1075	0.4872	0.1647	0.133*
C12	1.1682 (7)	0.3337 (8)	0.1950 (3)	0.110 (3)
H12	1.2339	0.3643	0.2196	0.133*
C13	1.1474 (6)	0.2162 (7)	0.1915 (2)	0.083 (2)
C14	1.0497 (5)	0.1703 (5)	0.15529 (17)	0.0650 (15)
H14	1.0369	0.0898	0.1530	0.078*
C15	1.2323 (9)	0.1368 (8)	0.2247 (2)	0.114 (3)
H2	0.862 (5)	0.023 (4)	-0.0072 (14)	0.081 (18)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.165 (9)	0.167 (9)	0.102 (7)	0.031 (7)	0.032 (7)	0.026 (7)
F2	0.139 (8)	0.198 (9)	0.157 (8)	0.018 (7)	-0.044 (7)	0.025 (7)
F3	0.150 (9)	0.146 (8)	0.118 (7)	0.075 (7)	-0.004 (7)	0.012 (6)
F1'	0.179 (8)	0.207 (8)	0.064 (4)	-0.003 (7)	-0.021 (5)	0.006 (5)
F2'	0.102 (5)	0.166 (8)	0.123 (6)	0.071 (5)	0.011 (5)	0.020 (6)
F3'	0.158 (7)	0.185 (7)	0.157 (7)	0.032 (6)	-0.052 (6)	0.061 (6)
01	0.057 (2)	0.068 (2)	0.071 (2)	0.0144 (17)	-0.0021 (17)	-0.0177 (19)
N1	0.059 (3)	0.052 (3)	0.068 (3)	0.002 (2)	-0.004 (2)	-0.001 (2)
N2	0.058 (3)	0.053 (3)	0.061 (3)	0.007 (2)	-0.005 (2)	-0.010 (2)
C1	0.053 (3)	0.045 (3)	0.065 (3)	0.000 (2)	-0.004 (3)	0.004 (3)
C2	0.054 (3)	0.071 (4)	0.099 (4)	0.002 (3)	-0.004 (3)	0.003 (4)
C3	0.059 (4)	0.150 (7)	0.147 (7)	0.020 (4)	-0.005 (4)	-0.044 (6)
C4	0.068 (4)	0.135 (6)	0.109 (5)	0.009 (4)	0.021 (4)	-0.014 (5)
C5	0.065 (3)	0.078 (4)	0.070 (3)	0.018 (3)	0.002 (3)	-0.009 (3)
C6	0.059 (3)	0.046 (3)	0.055 (3)	0.006 (2)	0.004 (2)	0.007 (2)
C7	0.056 (3)	0.041 (3)	0.047 (3)	0.006 (2)	0.001 (2)	0.002 (2)
C8	0.055 (3)	0.042 (3)	0.051 (3)	0.005 (2)	0.000 (3)	-0.002 (2)
C9	0.056 (3)	0.056 (3)	0.049 (3)	0.013 (2)	0.000 (2)	-0.009 (3)
C10	0.076 (4)	0.062 (4)	0.102 (5)	0.008 (3)	-0.020 (3)	-0.019 (3)
C11	0.091 (5)	0.085 (5)	0.152 (7)	0.013 (4)	-0.026 (5)	-0.055 (5)
C12	0.074 (4)	0.150 (7)	0.104 (5)	0.032 (5)	-0.020 (4)	-0.063 (6)
C13	0.064 (4)	0.131 (6)	0.051 (3)	0.039 (4)	-0.009 (3)	-0.017 (4)
C14	0.069 (3)	0.076 (4)	0.049 (3)	0.021 (3)	0.002 (3)	-0.002 (3)
C15	0.102 (6)	0.155 (7)	0.080 (5)	0.016 (5)	-0.025 (4)	-0.003 (5)

Geometric parameters (Å, °)

1.310 (9)	C4—H4A	0.9700
1.416 (9)	C4—H4B	0.9700
1.333 (9)	C5—C6	1.516 (7)
1.308 (8)	С5—Н5А	0.9700
1.282 (8)	С5—Н5В	0.9700
1.423 (9)	C6—C7	1.363 (6)
1.246 (5)	С7—С8	1.437 (6)
1.302 (6)	С7—С9	1.476 (6)
1.343 (5)	C9—C10	1.370 (7)
	1.310 (9) 1.416 (9) 1.333 (9) 1.308 (8) 1.282 (8) 1.423 (9) 1.246 (5) 1.302 (6) 1.343 (5)	1.310 (9) C4—H4A 1.416 (9) C4—H4B 1.333 (9) C5—C6 1.308 (8) C5—H5A 1.282 (8) C5—H5B 1.423 (9) C6—C7 1.246 (5) C7—C8 1.302 (6) C7—C9 1.343 (5) C9—C10

N2—C8	1.360 (6)	C9—C14	1.381 (6)
N2—H2	0.91 (4)	C10—C11	1.382 (8)
C1—C6	1.435 (6)	C10—H10	0.9300
C1—C2	1.499 (6)	C11—C12	1.364 (9)
C2—C3	1.481 (8)	C11—H11	0.9300
C2—H2A	0.9700	C12—C13	1.360 (9)
C2—H2B	0.9700	C12—H12	0.9300
C3—C4	1.441 (8)	C13—C14	1.377 (7)
С3—НЗА	0.9700	C13—C15	1.459 (9)
С3—Н3В	0.9700	C14—H14	0.9300
C4—C5	1.482 (7)		
C1—N1—N2	117.2 (4)	C10—C9—C14	118.2 (5)
N1—N2—C8	127.2 (4)	C10—C9—C7	122.0 (5)
N1—N2—H2	117 (3)	C14—C9—C7	119.7 (5)
C8—N2—H2	116 (3)	C9—C10—C11	121.2 (6)
N1—C1—C6	122.2 (4)	С9—С10—Н10	119.4
N1—C1—C2	115.8 (5)	С11—С10—Н10	119.4
C6—C1—C2	122.0 (5)	C12—C11—C10	119.5 (7)
C3—C2—C1	114.4 (5)	C12—C11—H11	120.2
C3—C2—H2A	108.7	C10-C11-H11	120.2
C1—C2—H2A	108.7	C13—C12—C11	120.2 (6)
C3—C2—H2B	108.7	C13—C12—H12	119.9
C1—C2—H2B	108.7	C11—C12—H12	119.9
H2A—C2—H2B	107.6	C12—C13—C14	120.2 (6)
C4—C3—C2	115.9 (6)	C12—C13—C15	120.6 (7)
С4—С3—НЗА	108.3	C14—C13—C15	119.1 (7)
С2—С3—НЗА	108.3	C13—C14—C9	120.6 (6)
С4—С3—Н3В	108.3	C13—C14—H14	119.7
С2—С3—Н3В	108.3	C9—C14—H14	119.7
НЗА—СЗ—НЗВ	107.4	F2'—C15—F1'	109.0 (9)
C3—C4—C5	115.0 (6)	F2'—C15—F1	126.4 (9)
C3—C4—H4A	108.5	F1'	46.3 (8)
С5—С4—Н4А	108.5	F2'—C15—F3	47.0 (8)
C3—C4—H4B	108.5	F1'—C15—F3	127.7 (10)
С5—С4—Н4В	108.5	F1—C15—F3	104.7 (12)
H4A—C4—H4B	107.5	F2'—C15—F2	63.7 (8)
C4—C5—C6	113.7 (5)	F1'—C15—F2	58.2 (8)
С4—С5—Н5А	108.8	F1—C15—F2	102.9 (11)
С6—С5—Н5А	108.8	F3—C15—F2	108.7 (12)
C4—C5—H5B	108.8	F2'—C15—F3'	103.3 (10)
С6—С5—Н5В	108.8	F1'—C15—F3'	98.7 (10)
H5A—C5—H5B	107.7	F1—C15—F3'	54.2 (8)
C7—C6—C1	119.0 (4)	F3—C15—F3'	59.2 (9)
C7—C6—C5	122.0 (4)	F2—C15—F3'	142.0 (8)
C1—C6—C5	118.9 (4)	F2'—C15—C13	117.3 (7)
C6—C7—C8	119.2 (4)	F1'—C15—C13	114.9 (8)
C6—C7—C9	123.9 (4)	F1—C15—C13	116.2 (9)
C8—C7—C9	116.9 (4)	F3—C15—C13	117.3 (8)
O1—C8—N2	119.7 (4)	F2-C15-C13	106.0 (8)

supplementary materials

01 - C8 - C7	125 1 (4)	F3'C15C13	111 A (7)
N2 C8 C7	125.1(4)	15-015-015	111.4(7)
N2	115.2 (4)		
C1—N1—N2—C8	0.0 (7)	C8—C7—C9—C10	119.0 (5)
N2—N1—C1—C6	2.7 (6)	C6—C7—C9—C14	119.2 (5)
N2—N1—C1—C2	-175.5 (4)	C8—C7—C9—C14	-60.3 (6)
N1—C1—C2—C3	-170.9 (5)	C14—C9—C10—C11	-1.9 (9)
C6—C1—C2—C3	10.9 (8)	C7—C9—C10—C11	178.7 (5)
C1—C2—C3—C4	-34.6 (9)	C9—C10—C11—C12	0.9 (10)
C2—C3—C4—C5	52.9 (10)	C10-C11-C12-C13	0.3 (11)
C3—C4—C5—C6	-44.3 (8)	C11—C12—C13—C14	-0.4 (10)
N1—C1—C6—C7	-2.3 (7)	C11—C12—C13—C15	177.2 (7)
C2—C1—C6—C7	175.7 (4)	C12—C13—C14—C9	-0.6 (8)
N1-C1-C6-C5	177.4 (4)	C15—C13—C14—C9	-178.3 (5)
C2—C1—C6—C5	-4.5 (7)	C10-C9-C14-C13	1.8 (8)
C4—C5—C6—C7	-159.9 (5)	C7—C9—C14—C13	-178.9 (5)
C4—C5—C6—C1	20.4 (7)	C12-C13-C15-F2'	-90.7 (11)
C1—C6—C7—C8	-0.6 (6)	C14—C13—C15—F2'	86.9 (12)
C5—C6—C7—C8	179.6 (4)	C12-C13-C15-F1'	39.4 (13)
C1—C6—C7—C9	179.9 (4)	C14—C13—C15—F1'	-142.9 (10)
С5—С6—С7—С9	0.2 (7)	C12-C13-C15-F1	91.1 (14)
N1—N2—C8—O1	177.9 (4)	C14-C13-C15-F1	-91.3 (14)
N1—N2—C8—C7	-2.7 (7)	C12-C13-C15-F3	-144.0 (13)
C6—C7—C8—O1	-177.8 (4)	C14—C13—C15—F3	33.7 (15)
C9—C7—C8—O1	1.7 (7)	C12-C13-C15-F2	-22.5 (12)
C6—C7—C8—N2	2.9 (6)	C14—C13—C15—F2	155.2 (10)
C9—C7—C8—N2	-177.6 (4)	C12—C13—C15—F3'	150.6 (10)
C6—C7—C9—C10	-61.5 (7)	C14—C13—C15—F3'	-31.8 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$		
N2—H2···O1 ⁱ	0.91 (4)	1.88 (4)	2.783 (5)	178 (5)		
C12—H12…F3 ^{'ii}	0.93	2.51	3.362	152		
Symmetry codes: (i) $-x+2$, $-y$, $-z$; (ii) $-x+5/2$, $y+1/2$, $-z+1/2$.						

Fig. 1

